

EPD CERTIFICATION

45 West 23st Street, New York, NY 10010 | Showroom - 212.256.1540 tilebar.com | info@tilebar.com | Client Services - 888.541.3840

tilebar

ROMANI COLLECTION

ENVIRONMENTAL PRODUCT DECLARATION

PRODUCT NAME:

PRODUCTION SITE:

Porcelain stoneware tiles and slabs for floors and walls, indoor and outdoor Imola; Faenza; Borgo Tossignano

in compliance with ISO 14025:2006 and EN 15804+A2:2019/AC 2021

Program operator	EPDItaly
Publisher	EPDItaly
Declaration number	CCI – EPD1
Registration number	EPDITALY0490
Issue date	11/10/2023
Valid to	11/10/2028

1. GENERAL INFORMATION

EPD owner	Cooperativa Ceramica d'Imola s.c. Via Vittorio Veneto, 13 – 40026 Imola (BO)
Reference production site	Site 2 – Via Correcchio, 32 – 40026 Imola (BO) Site 3 – Via Ripalimosani, 1 – 40021 Borgo Tossignano (BO) Site 5 – Via Pana, 10 – 48018 Faenza (RA)
Scope of application	This is an average EPD referring to ceramic tiles manufactured in 3 different production plants owned by Cooperativa Ceramica Imola: Borgo Tossignano (BO), Faenza (RA) and Imola (BO). The 3 tiles are manufactured following the same production path and delivered and installed worldwide.
Programme operator	EPDItaly – info@epditaly.it Via Gaetano De Castillia, 10, 20124 Milano (MI)
	This declaration has been developed in accordance with the regulations of EPDItaly; further information and the same regulations are available at: www.epditaly.it
Independent verification	Independent verification of the declaration and data carried out in accordance with ISO 14025: 2006 □ Internal
	Third party verification done by: ICMQ S.p.A. (www.icmq.it), Via Gaetano De Castillia, 10, 20124 Milano (MI) – Italia. Accredited by ACCREDIA, Accreditation number 002H REV. 19
CPC code	37370 - Ceramic flags and paving, hearth or wall tiles; ceramic mosaic cubes and the like
Company contact	Roberto D'Agostino e-mail: roberto.dagostino@ccimola.it
Technical support	Enel X Advisory Services e-mail: nader.tayser@enel.com
PCR – Product Category Rules	Core-PCR ICMQ-001/15 rev 3 – MAIN PCR IBU PCR Part B: Requirements on the EPD for Ceramic tiles and panels v.1 – SUPPORTING PCR

	EN ISO 14025:2006, Environmental labels and declarations – Type III environmental declarations – Principles and procedures
Reference documents	EN 15804+A2:2019/AC 2021 - Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products
	Regulations of the EPDItaly Programme. Revision 5.2. Issue date 16/02/2022
Comparability	EPDs published within the same product category though originating from different programs may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.
Liability	The EPD owner relieves EPDItaly from any non-compliance with the environmental legislations. The holder of the declaration will be liable for the supporting information and evidence. EPDItaly disclaims any liability regarding the manufacturer's information, data, and results of the life cycle assessment.

2. THE COMPANY

Cooperativa Ceramica d'Imola is one of the oldest, longest-standing production and work cooperatives in Italy. With its headquarters and plant in Imola, Cooperativa Ceramica d'Imola is a company manufacturing ceramic and porcelain stoneware flooring and cladding for public and private use. It currently has three production plants, as well as its headquarters.

The Cooperativa Ceramica d'Imola was established following the transfer of the tableware and majolica factory owned by Giuseppe Bucci and his brother Angelo to its workers on 22 June 1874. A transfer that was driven by a desire to contribute to the "progress of industry and the economic improvement of the workers". A belief that is approved and declared by all the historical members in the Brotherhood Agreement and numerous statutes.

At the end of the 1800s, the Cooperativa Ceramica d'Imola inaugurated the Artistic Section, an artisan laboratory for artistic research and the production of majolica. The main stages of its production are still carried out in this workshop today.

The decades that span from the mid-1800s to the end of the century are dominated by a constant growth and continuous increase in production capacity. The Cooperativa Ceramica d'Imola entered the twenty-first century by expanding its production range and with state-of-the-art technological solutions to meet the needs of foreign markets in rapid expansion as well as satisfying the request to safeguard the environment which customers and the local area were expecting.

Continual improvement for customer satisfaction, focusing on people, on working conditions, pay, quality, the environment and workers' safety have always been at the heart of decisions made to reach new goals. Products covered by this EPD are intended both for B2B and for B2C market groups.

• • • • •

- -

3. THE PRODUCT

Porcelain stoneware is made of high-grade clay, quartz and feldspar materials combined to create a product that is almost completely vitrified and which offers both a light colour, almost zero water absorption and a product that is highly bend and scratch resistant. It can be decorated on the surface with glaze and ink applications. The technical porcelain stoneware has a "full-body" technology in which the tile's matrix is coloured.

Ceramic tiles produced by Cooperativa Ceramica d'Imola conform to the following standards and specifications. According to EN 14411 in Europe and ISO 13006 in the rest of the world ceramic tiles are classified into five main types based on shaping methods (A = Extrusion, B: Dry pressing) and water absorption level.

Table 1. Technical characteristics of the product

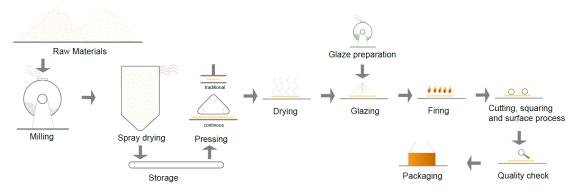
PORCELAIN STONEWARE	average value
Dimensions and appearance (ISO 10545-2)	compliant
Water absorption (ISO 10545-3)	<0,1%
Flexural resistance (ISO 10545-4)	>45 N/mm ²
Modulus of rupture (ISO 10545-4) referred to 60x60 cm size and 6,5 mm thickness	>1800 N
Modulus of rupture (ISO 10545-4) referred to 60x60 cm size and 10 mm thickness	>3000 N
Modulus of rupture (ISO 10545-4) referred to 60x60 cm size and 20 mm thickness	>11000 N
Deep abrasion resistance (ISO 10545-6)	<140 mm ³
Resistance to surface abrasion (ISO 10545-7)	Classes 0-5
Linear expansion thermic coefficient (ISO 10545-8)	≤7x10 ⁻⁶ °C ⁻¹
Resistance to sudden temperature changes (ISO 10545-9)	Resistant
Frost resistance (ISO 10545-12)	Resistant
Household chemicals and swimming pool water cleansers (ISO 10545-13)	min. B
Acids and low concentration alkalis (ISO 10545-13)	from LA, LB to LC
Acids and high concentration alkalis (ISO 10545-13)	available on request
Stain resistance unglazed tiles (ISO 10545-14)	available on request
Stain resistance glazed tiles (ISO 10545-14)	min. 3

Material composition

The declaration on the content of materials for the product was done by the manufacturer in accordance with product recipe. The unique ID and percentage mass share of all the materials and declarable substances contained in the fully assembled product plus its packaging are reported in **table 2.** Only material flows with mass share higher than 0,5% are reported; results are then re-calibrated to 100% according to this criterion. Calculation is performed on a weighted average considering the 3 involved plants.

Table 2. Material composition for the fully assembled product

Material class name	Average mass share (%)
Feldspar	41.3
Clay	33.5
Feldspathic sand	7.3
Internal secondary material ¹	5.6
External secondary material	5.0
Silica sand	3.8
Pallet – PACKAGING	2.2
Fluidifiers	0.6
Paper – PACKAGING	0.5


Byproducts

Tile manufacturing generates some output flows which have an own market and therefore can be considered as byproducts. These flows are reported in table below but they are not included in the LCA; therefore, no allocation among products and byproducts has been performed in this EPD.

Table 3. Byproducts production and modelling approach per site

Plant	Byproduct	Quantity [kg/year]
Imola	Dust	1.694.180
Imola	Tile byproduct	1.716.268
Borgo Tossignano	Tile byproduct	6.654.360
Faenza	Tile byproduct	8.143.240
Faenza	Tile byproduct - raw	2.561.080

Manufacturing process

¹ This flow does not contribute to recycled content according to ISO 14021

Reference service life

The reference service life (RSL) of the product was 50 years as stipulated in reference PCR and supporting standards.

4. SCOPE AND TYPE OF EPD

This is an average product and plant EPD for the general product defined as "ceramic tile" manufactured in 3 different production sites owned by Cooperativa Ceramica d'Imola. The spatio-temporal scope for the data considered in this study are summarized in **table 3**. The results of the LCA study were generated by a background LCA activity which results and detailed hypotheses are documented in project deliverable *Report LCA Coop. Ceramica Imola_v2*.

Table 4. The spatio-temporal scope considered in the LCA study at the current global level of technology

Representativeness	Scope
Spatial	Italian territory (manufacturing); worldwide
	scope for life cycle phases from gate factory
	up to the end of life
Temporal	January 1 st to December 31 st , 2021

Declared unit

The declared unit (FU) of the studied system is defined as 1 m^2 of ceramic tile, manufactured in each of the 3 production plants involved in the study, with a weighted average density² of 22,4 kg/m², installed onsite with a reference service life of 50 years according to supporting PCR. According to normative framework, a **declared unit** with the same properties as the functional unit is adopted as some life cycle modules are excluded from the system.

System boundary

The system boundary implemented in this LCA covered the entire lifecycle of the product i.e., from cradle to grave as shown in **table 4** with the life cycle stages for all the major activities involved, grouped into three distinct modules i.e., upstream, core, and downstream with reference to EN 15804. *Modularity* and *Polluter pays* principles are followed along LCA modelling activities in compliance with reference normative framework. The product life cycle and inventory analysis describing all the activities, simplifying assumptions, and modelling scenarios used in the LCA has been exhaustively executed under **section 5** of this document.

² According to what specified in chapter 5

Phase	Upst	ream	Core		Downstream												
Module	A1	A2	A3	A4	A5	B1	B2	B3	Β4	В5	B6	Β7	C1	C2	C3	C4	D
Declared module	х	х	х	х	х	ND	х	ND	ND	ND	ND	ND	х	х	х	х	х

Table 5. Life cycle stages, geographical scope, and modules declared in the system boundaries:

X = Lifecycle stages and modules declared in the LCA

ND = module not declared in the LCA results

Cut-off criteria

Cut-off criteria are not exceeding thresholds defined by reference PCRs. Any unit process has been accounted for at least 99% of total material and energy flows, thus meaning 1% cut-off can be estimated. During manufacturing stage, packaging of semifinished products and raw materials has been excluded from the study due to the high complexity in retrieving such data which contribution is expected to be negligible.

Decommissioning phase has been assumed to be performed manually, therefore no material nor energy input is considered in associated life cycle modules.

Allocation rules

No allocation has been performed in this study. Plant-based data have been normalized on total plant production according to the goal of the study, which is the determination of the environmental impact of the average product manufactured in Cooperativa Ceramica d'Imola proprietary plants.

Data quality

The most recent and verifiable site-specific data collected in 2021 was used in this study, and the International System of Units (SI) was adopted while recording the data. The initial primary data forming the basis for the LCA are industrial accounting systems (for what concerns plant data such as energy invoices), incoming material passports and purchase notes. Waste streams occurring during manufacturing have been modelled starting from waste management systems implemented in the involved plants.

PRODUCT LIFE CYCLE AND INVENTORY ANALYSIS

The life cycle inventory (LCI) lists and quantifies all the flows entering and leaving all the declared life cycle stages of the product within the system boundary considered in relation to the scope of the study. The

reference flow for the LCI is 1 m² of ceramic tile, lasting 50 years after being installed. Next sections describe relevant assumptions performed in each life cycle stage.

Manufacturing (modules A1, A2, A3)

No significant assumptions have been performed for manufacturing, as this phase is completely covered by data controlled by the EPD owner.

Distribution (A4)

From this point forth, all the activities are classified under the downstream module. To ensure continuity with previous LCAs performed by the EPD owner, the set of distribution default parameters provided by supporting IBU PCR has been adopted, considering lack of specific parameters in the main regulatory framework. Table below summarizes the considered scenario:

Distribution route	Route share	Average distance [km]	Main transport considered
National	25%	300	Transport, freight, lorry >32 metric ton, EURO5
European	39%	1.390	Transport, freight, lorry >32 metric ton, EURO5
International	36%	6.520	Transport, freight, sea, container ship

Installation (A5)

Installation has been modelled considering default scenario provided by supporting PCR. Associated material input is reported below:

ltem	Quantity per m ² [kg]	Processo Ecoinvent
Mortar	0,5	Adhesive mortar
Plaster (water	25	Base plaster
based)	2,5	Tap water
Polysulfide	0,07	Polysulfide, sealing compound

Use (B2)

Environmental loads of use phase are associated with tile cleaning. This process, due to the lack of primary data, has been modelled considering supporting PCR default parameters. As the tile can be installed both in walls and floors, different quantities of cleaning products and water are required: the considered installation scenario is 60% for floor applications and 40% for wall applications. Resulting scenario, combining the default parameters for the aforementioned application share, is that 1m² of tiles considered in this EPD requires 164 I of water and 328 ml of surfactant for the whole 50 years RSL established.

End of life

End of life is modelled according to supporting PCR. C1 module is populated considering 0,047 MJ/kg of mechanical demolition energy, parametrized considering average density plus installation auxiliary

materials. Collected demolition waste is delivered to the treatment facility: a default distance of 20 km covered by 16 t truck has been assumed for this transport. An additional 30 km transport has been considered from collection site to final end of life site (both landfill or recycling facility). The reference end of life scenario is 70% recycling and 30% landfill according to supporting PCR. Auxiliary materials for installation are supposed to be entirely landfilled. As tiles are likely to be quite grinded after building demolition, no inputs of material and energy are accounted in module C3.

Once recycled, ceramic tiles are usually adopted as filler for road pavement. While computing D module, avoided impacts have been calculated considering a benchmark dataset for gravel production, which is the most likely alternative product manufactured from virgin sources to deliver the same function as spent ceramic tiles.

5. LCA RESULTS

The environmental performance results of the product for the different lifecycle stages per FU accounting for all the mandatory environmental impact indicators (**Table 5**), descriptive parameters for resource use (**Table 6**), and waste production (**Table 7**) calculated according to reference regulatory standards³.

Results are computed by performing weighted average among the three involved plants according to production shares reported below:

Averaging parameters					
Manufacturing site	Production [m²/year]	Share [%]	Average tile density [kg/m ²]		
Imola	5 625 541	31,6	24,7		
Borgo Tossignano	5 099 167	28,7	22,0		
Faenza	7 050 654	39,7	20,9		

³ EN15804+A2:2019 – Annex C - Table C.1 — Core environmental indicators, units and models; EF3.0 Package has been adopted in this EPD

LCA RESULTS - AVERAGE TILE

	Environmental impacts																		
Indicator	U.M.	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	Total	D
GWP-total	kg CO2 eq	4,01E+00	1,14E+00	5,08E+00	1,63E+00	1,52E+00		1,42E+00						1,14E-01	2,23E-01	0,00E+00	2,71E-02	1,52E+01	-2,51E-02
GWP-fossil	kg CO ₂ eq	4,01E+00	1,14E+00	4,23E+00	1,63E+00	1,46E+00		1,06E+00						1,14E-01	2,23E-01	0,00E+00	2,71E-02	1,39E+01	-2,49E-02
GWP-biogenic	kg CO ₂ eq	3,30E-03	7,64E-05	8,53E-01	1,11E-04	6,38E-02		3,97E-03						8,38E-06	1,61E-05	0,00E+00	3,49E-06	9,25E-01	-1,93E-04
GWP-luluc	kg CO ₂ eq	1,51E-03	2,99E-05	1,66E-03	3,79E-05	9,87E-04		3,59E-01						1,55E-05	4,23E-06	0,00E+00	1,32E-06	3,63E-01	-6,34E-06
ODP	kg CFC-11 eq	2,96E-07	2,06E-08	7,31E-07	3,08E-08	3,43E-08		9,36E-09						3,21E-02	4,66E-09	0,00E+00	3,90E-10	3,21E-02	-4,12E-10
AP	moli H [*] eq	1,35E-02	1,96E-02	4,76E-03	1,85E-02	6,91E-03		6,20E-03						3,58E-02	5,46E-04	0,00E+00	2,44E-04	1,06E-01	-1,93E-04
EPf	kg P eq	5,10E-04	7,23E-06	3,91E-04	1,04E-05	3,06E-04		2,78E-04						3,07E-04	1,47E-06	0,00E+00	9,27E-08	1,81E-03	-1,36E-06
EPm*	kg N eq	3,13E-03	5,28E-03	3,94E-03	5,00E-03	1,52E-03		4,58E-03						5,38E-04	2,12E-04	0,00E+00	1,11E-04	2,43E-02	-8,66E-05
EPt*	mol N eq	3,35E-02	5,81E-02	1,86E-02	5,48E-02	1,45E-02		1,88E-02						2,31E-03	2,24E-03	0,00E+00	1,21E-03	2,04E-01	-9,39E-04
POCP	kg NMVOC eq	2,24E-02	1,61E-02	6,40E-03	1,60E-02	4,81E-03		3,88E-03						2,37E-03	8,84E-04	0,00E+00	3,61E-04	7,32E-02	-2,86E-04
ADPe**	kg Sb eq	1,19E-04	2,55E-08	2,55E-07	4,25E-08	5,46E-06		9,07E-07						2,19E-03	7,42E-09	0,00E+00	1,04E-09	2,32E-03	-1,02E-08
ADPf**	MJ	1,56E+02	1,41E+01	1,01E+01	2,01E+01	1,78E+01		2,32E+01						5,74E-01	2,82E+00	0,00E+00	3,38E-01	2,45E+02	-4,75E-01
WDP**	m ³	1,95E+00	1,30E-02	8,81E-01	1,86E-02	5,44E-01		8,00E+00						4,15E-01	2,64E-03	0,00E+00	4,68E-04	1,18E+01	-7,21E-03

*: Optional environmental KPIs which are not mandatory according to reference PCR

**: Care shall be taken while handling these KPIs due to high uncertainties in the impact assessment method and limited experience on the interpretation of the results expressed by the indicator

6. REFERENCES

- 1. EPDItaly general programme instruction v.5.2 16/02/2022
- 2. Core-PCR: Product Category Rules PCR ICMQ-001/15 v.3 02/12/2019
- 3. Supporting PCR: IBU PCR Part B: Requirements on the EPD for Ceramic tiles and panels v.1
- 4. EN 15804+A2:2019/AC 2021 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- 5. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures
- 6. UNI EN ISO 14040:2006 Environmental management Life cycle assessment Principles and framework
- 7. UNI EN ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- 8. Reference LCA report: Report LCA Coop. Ceramica Imola_v5-CCIMOLA.pdf

9. ANNEX: IMPACT ASSESSMENT METHODS

Impact category	Indicator	Unit	Model
Climate change – total	Global Warming Potential total (GWP-total)	kg CO2 eq.	Baseline model of 100 years of the IPCC based on IPCC 2013
Climate change - fossil	Global Warming Potential fossil fuels (GWP-fossil)	kg CO2 eq.	Baseline model of 100 years of the IPCC based on IPCC 2013
Climate change - biogenic	Global Warming Potential biogenic (GWP-biogenic)	kg CO2 eq.	Baseline model of 100 years of the IPCC based on IPCC 2013
Climate change - land use and land use change	Global Warming Potential land use and land use change (GWP-luluc)	kg CO2 eq.	Baseline model of 100 years of the IPCC based on IPCC 2013
Ozone depletion	Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 eq.	Steady-state ODPs, WMO 2014
Acidification	Acidification potential, Accumulated Exceedance (AP)	mol H+ eq.	Accumulated Exceedance, Seppälä et al. 2006, Posch et al., 2008
Eutrophication, freshwater	Eutrophication potential, fraction of nutrients reaching freshwater end compartment (EP-freshwater)	kg PO4 eq.	EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe
Eutrophication, marine	Eutrophication potential, fraction of nutrients reaching marine end compartment (EP-marine)	kg N eq.	EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe
Eutrophication, terrestrial	Eutrophication potential, Accumulated Exceedance (EP- terrestrial)	mol N eq.	Accumulated Exceedance, Seppälä et al. 2006, Posch et al.
Photochemical ozone formation	Formation potential of tropospheric ozone (POCP)	kg NMVOC eq.	LOTOS-EUROS ,Van Zelm et al., 2008, as applied in ReCiPe
Depletion of abiotic resources - minerals and metals	Abiotic depletion potential for nonfossil resources (ADPminerals&metals)	kg Sb eq.	CML 2002, Guinée et al., 2002, and van Oers et al. 2002.
Depletion of abiotic resources - fossil fuels	Abiotic depletion for fossil resources potential (ADP-fossil)	MJ, net calorific value	CML 2002, Guinée et al., 2002, and van Oers et al. 2002.
Water use	Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	m3 world eq. deprived	Available WAter REmaining (AWARE) Boulay et al., 2016

Particulate matter emissions	Potential incidence of disease due to PM emissions (PM)	Disease incidence	SETAC-UNEP, Fantke et al. 2016
lonising radiation, human health	Potential Human exposure efficiency relative to U235 (IRP)	kBq U235 eq.	Human health effect model as developed by Dreicer et al. 1995 update by Frischknecht et al., 2000
Ecotoxicity (freshwater)	Potential Comparative Toxic Unit for ecosystems (ETP-fw)	CTUe	Usetox version 2 until the modified USEtox model is available from EC- JRC
Human toxicity, cancer effects	Potential Comparative Toxic Unit for humans (HTP-c)	CTUh	Usetox version 2 until the modified USEtox model is available from EC- JRC
Human toxicity, non- cancer effects	Potential Comparative Toxic Unit for humans (HTP-nc)	CTUh	Usetox version 2 until the modified USEtox model is available from EC- JRC
Land use related impacts / soil quality	Potential Soil quality index (SQP)	dimensionless	Soil quality index based on LANCA
Waste streams and output flows	All waste categories	kg	EDIP